Overview
Recap: basic data structures

Data Structures and Algorithms for Computational Linguistics I1I

+ Some basic data structures

Gagn Coltekin - Arays
ceoltekindsts. uni-tuebingen. de - Lists
- Stacks

Universty of Tebingr. - Queues

Semias s Sprschisenschatt. + Revisiting searching a sequence

Winter Semester 2022.2023

Abstract data types and data structures Array

« Anarray is simply a contiguous sequence of
objects with the same size.
* At dat tpe (AT, o abc din trctu, b syt with

« Arrays are very close to how computers store
) and pop()

data in their memory
« Arrays can also be multi-dimensional. For
le, mat

operatons

o ucture.
For. cx:\mplc vk canbe mplemented waing a nked I, or an arry .

2-dimensional arrays.
. he names and ther usage

ngly + Arrays support fastaccess to their lements.
through indexing
+ On the downside, resizing and inserting values
in arbitrary locations are cxpensive

Arrays
nPython

+ Main operations for list ADT are
~ append (and lp“pend)
all)

oL using linked lists wsed lists are
« Nobuilt-in array data also common)
structure in Python

+ Lists are indexable.

+ For proper/faster arrays,
use the nuspy library

a2a = [(3, 6, 8], (3, 3, 0])

it s head —[3 =6 }—=8 |—{5 |

« Python lists are array-based

read — {3 ——E 11— —E1—0

Stacks Queues

+ A queue is frstn-fist (FIFO) out data structure
« Two basic operations:

- enquee

- dequeue
+ Queues can be implemented using linked lists (or maybe arrays)

« A stack is a last-in-first (LIFO) out data structure
« Two basic operatior
- push.

- pop
+ Stacks can be implemented using linked lists (or arrays)

enqueue(3) enquene(s)
push(3) push(s) pop0) T T

doquenc()

Other common ADT Studying algorithms
o study Jud

« Strings are often implemented based on character arrays - Sorting
+ Maps o dicionaresare similar o arrays and liss, but allow indexing with Pattrn matching

(almost) arbitrary data types - Graph traversal

~ Mapsare generally implemented using hashing,lter i thiscourse) + For any algorithm we design /use, there are a prop

. (finite) set: collecion. Consnes analontmshou dowhat s supposed 0 do

e R (correcty

orithm should b Hght o resource g

Eih
« Trees are used in many algorithms we discuss later (we will revisit trees as S\mplmh n algortn should beas smpl a possibe

data structures)

« We will briefly touch upon a few of these issues with a simple case study

A simple problem: searching a sequence for a value Linear search: take 2
2 def l:s\::; search(seq, val): 1 def linear_search(seq, vall
e e oo i m,-,s(]e,,(sgqn
g it seqli) == val g ratarn ©
. return answer N EeEC]NS
1Is this a good algorithm? Can we improve it? (Canwe do cven bettm?

Linear search: take 3

+ dof Linear_search(seq, val)
o - len(seg) -
s last - seqln]
o seqln] - val
i=0 « Is this better?
¢ while seqli] 1+ vl + Any disadvantages?
- + Can we do even better?

© sealnl

Binary search

1 dof binary_search(seq, val)
Loft, right - 0, len(seq)
ight:
* right)
val

o nid the sequence s sorted.
£
u_ return None

« We can do (much) better if

Binary search

(left + right) /.
val.

w if seqmid] > val
“ roturn binary_search_recursive(seq, val, left, mid - 1)

olse:
u return binary_search_recursive(seq, val, mid + 1, right)

A note on recursion

+ Some problems are much easier to solve recursively
+ Recursion

concept, properties of
are often easier to prove
+ Reminder:
- You have to define one or more buse cses (e, 1t 1oft > right for binary
arch)

. should

= P approach
portion of the data)

« Wewill see quite afew recursive algorithms, it s time for getting used to if
You are not

Exercise: write a recursive function for linear search,

mmary

- This lecture is a review of some basic data structure and algorithms
 We will assume you know these concepts, please revise your earlier
knowledge if needed
Next
« Analysis of algorithms (Reading; textbook (goodrich2013) chapter 3)
« A few common patterns for designing (efficient) algorithms

An interesting (but not-extremely-relevant) anecdote

How hard can binary search could be?
« Tt was first suggested in a lecture in 1946 (by John Mauchly)
« Firstfix to this version was suggested in 1960 (by Derrick Henry Lehmer)
+ Another, fix/improvement over this was published in 1962 (by Hermann
Bottenbruch)
+ In 2006, a bug in Javars binary search implementation was discovered

Acknowledgments, credits, references

« Some of the slides are based on the previous year's course by Corina Dima.

	Recap: basic data structures
	Introduction
	Overview
	Abstract data types and data structures

	Abstract data types
	Arrays
	Arrays
	Lists
	Stacks
	Queues
	Other common ADT

	Algorithms
	Studying algorithms
	A simple problem: searching a sequence for a value
	Linear search: take 2
	Linear search: take 3
	Binary search
	Binary search
	A note on recursion

	
	Summary
	An interesting (but not-extremely-relevant) anecdote
	Acknowledgments, credits, references

