Algorithmic patterns
Data Structures and Algorithms for Computational Linguistis 1l
(1sCL8A7)

Gagn Caltekin
ceoltekindats. uni-tuebingen. de

Universty of Tubingen
S e Sprachwisnmachtt

Winter Semester 2022/23

Overview

+ Some common approaches to algorithm design

- Divide and conquer

- algorithms.
- Dynamic programming

Recursion

linearsearch again

writinga search.

+ Recursion is

(the complete eoge

« And we need et §

Can we improve this?

rotura ¥1_search(seqli:], val, i+1)

How does this recursion work

recursion trace/graph

1 search((2],2,8)

Recursion: practical issues

recurson depth and talrecursion

« Each function call requires some bookkeeping

.C "
function call

« Most environments limit the number of recursive calls: long chains of
recursion are likely to cause errors

« Tail rcursion (e:g, our

Another recursive example
evry aigothm cours s e toirodce Flbonacet numbers
Fibonacei numbers are defined as:

Fo=0
F=t
Fa=Foa+Faz for n>1

roturn £1b(n-2;

+ tib(a-1)

iseasy . in math, and + Note that we now have binary
« Itis also easy to optimize, and optimized by many compilers (not by the ‘maps well to the recursive. recursion, each function call creates
Python interpreter) algorithms two calls o self
+ We follow the math exactly, but is
this code efficient?

Visualizing binary recursion

Complexity of (naive) Fibonacei algorithm

recusion tree for 115(7)

f»f

Brute force Brute force
example inding allpossible ways to segment astring,

« In some cases, we may need to enumerate al possible cases (e.g, to find the
best solution)

+ Common in combinatorial problems

« Often intractable, practical only for small input sizes

+ Segmentation is prevalentin CL.
= words:
thatdo not use white space)

compound splits

N + We consider the following problem:
~ Given a meticr score to determine th "best” segmentation
i 5
+ How can we enumerate all possible segmentations of string?
Segmentation Segmentation
S cunira sl el
JP—— {fabedl, abe,) b, cd],[ab, . d],
I {a bed, [e, d), [, by e, o by, d]]
‘ return ([seq]] [[bcd), [be, d],
© for seg in segnant_x(seqli:]) al) tb.cd), b, < al]
. segs.append([seq(0]] + seg)
: Segs. append ([seq(0] + seg(0]] + segl1:])
L rotumn segs

+ Can you think of a non-recursive solution?

([ed]. [c d])
o

[c)
{147}

Enumerating segmentations

sketchof a non-recursive solution

« 1" means there is a boundary at this position
« Problem is now enumerating all possible binary strings of length n. — 1
(this s binary counting)

Divide and conquer

« The general P it becomes
trivial o solve.
+ Once small parts are solved, the results are combined
+ Goes well with recursion
+ We have already seen a particular flavor: binary search
« The algorithms like binary search and conquer

Divide and conquer

Divide and conquer

Generatdea an example:neaest elghbors (ony heth)
Big problem « Task: find the closest two points =m
divide * Dt ol oq % e
iy 20 = 400 comparisons’ o
« Divide . - o
conquer * Sl sepamtly (conger - .
0510410 x 10 = 200 comparisons . e
« Combne pikheminimamotthe. | L
pa— individual solutions
Divide and conquer Divide and conquer
an cxample: nearest nfghbors(only aseteh)
+ Task:find the closest two points)
+ Directsolution: o0 J o « Thisis probably the most common pattern
20 = 400 comparisons' . + Divide and conquer does not always yield good result, the cost of merging
+ Divide ° 0 . should be less than the gain from the division(s)
* Solveseparey cnauer o . + Many of the important algoriths fal into this category:
10510410 x 10 = 200 comparisons, B ~ merge sortand quicksort (coming soon)
+ Combine: pick T . o - integer muliplication
 matr multpliation

+ Gain is higher when n is larger, and we divide further

- fast Furrier transform (FFT)

Greedy algorithms

« Analgorithm is greedy if it optimizes a local constraint

« In others they may result n “good enough' solutions

« Ifthey work,they are effcient

+ An important class of graph algorithms fallinto this category (., finding
Shortest paths, scheduling)

reedy algorithms
smple xample: ‘change making

+ We want to produce minimum number of coins for a particular sum s
1. Pick the largest coin ¢ <=
2 sets=s—c
5. repeat 1 & 2until s 0
« Is this algorithm correct?
« Think about coins of 10, 30, 40 and apply the algorithm for the sum value of 60
« Is it correct if the coin values were limited Euro coins?

Dynamic programming

tosave

+ Dyna
computation

« Itis sometimes called memoization (it is not a typo)
se fall ud

I ber of algy
common parsing algorithms.

Dynamic programming
cxample Fibonacc

1 det memotivGa, memo = {0 0, 1:19)

. Caeola) © mesofib(a-1) + memofib(a-2)
¢ roturn memoln]

« We save the results calculated in a dictionary,

« if the resultis a) we return

« Otherwise we calculate recursively as before

+ The difference i big, but there is also a ‘neater” solution without (explicit)
‘memoization

Complexity of Fibonacei algorithm with dynamic pogramming
rson fre for £30.(7)

Summary

o WOl .\ppmaghss © [efﬁclsm) algomhm design
« De:
« There are other common patterns, m:ludmg

- Backtracking, Branch-and-bound

~ Randomized algorithms

~ Transformation
+ De: Igorithmes s difficul i
Next:
« Sorting
+ Reading: goodrich2013

Nearest neighbors

« Define and impl a
problem, which divides the input into two until the solution becomes trivial

. d compare to above (an
implementation was provided in the previous lecture)

Linear search

sl bit ofoptimization

R3S

fetarn 51 searchsn v, §

Better solutions for Fibonacci numbers

Which one is faster /better?

Segmentation

+ dot sognent_r(seq)
if len(seq)
yiold [seq)

1

for seg in segment _r(seq(1:])
yiold [seqlo]] + seg
yiela (seqlo] + seg(0]] + segli:]

, credits, references

Acknowledgment

« Some of the slides are based on the previous year's course by Corina Dima

