
Algorithmic patterns
Data Structures and Algorithms for Computational Linguistics III

(ISCL-BA-07)

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2022/23

version: 868b71f @2022-11-02

Overview

• Some common approaches to algorithm design
– Revisiting recursion
– Brute force
– Divide and conquer
– Greedy algorithms
– Dynamic programming

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 1 / 1

Recursion
linear search again

Your task from the first lecture: writing a recursive linear search.

• Recursion is relatively easy:
if val == seq[0]:

return i
else:

return rl_search(seq[1:], val, i+1)

• And we need a base case:
if not seq: # empty sequence

return None

the complete code
1 def rl_search(seq, val, i=0):
2 if not seq:
3 return None
4 if val == seq[0]:
5 return i
6 return rl_search(seq[1:], val, i+1)

Can we improve this?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 2 / 1

How does this recursion work
recursion trace/graph

rl_search([1,3,6,2],2,0)

rl_search([3,6,2],2,1)

rl_search([6,2],2,2)

rl_search([2],2,3)

return 3

return 3

return 3

return 3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 3 / 1

Recursion: practical issues
recursion depth and tail recursion

• Each function call requires some bookkeeping
• Compilers/interpreters allocate space on a stack for the bookkeeping for each

function call
• Most environments limit the number of recursive calls: long chains of

recursion are likely to cause errors
• Tail recursion (e.g., our recursive search example) is easy to convert to iteration
• It is also easy to optimize, and optimized by many compilers (not by the

Python interpreter)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 4 / 1

Another recursive example
every algorithm course is required to introduce Fibonacci numbers

Fibonacci numbers are defined as:

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2 for n > 1

• Recursion is common in math, and
maps well to the recursive
algorithms

1 def fib(n):
2 if n <= 1:
3 return n
4 return fib(n-2) + fib(n-1)

• Note that we now have binary
recursion, each function call creates
two calls to self

• We follow the math exactly, but is
this code efficient?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 5 / 1

Visualizing binary recursion

fib(4)

fib(2)

fib(1) fib(0)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

01

1

01

1 1

2

3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 6 / 1

Complexity of (naive) Fibonacci algorithm
7

6

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

4

3

2

1 0

1

2

1 0

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

recursion tree for fib(7)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 7 / 1

Brute force

• In some cases, we may need to enumerate all possible cases (e.g., to find the
best solution)

• Common in combinatorial problems
• Often intractable, practical only for small input sizes
• It is also typically the beginning of finding a more efficient approach

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 8 / 1

Brute force
example: finding all possible ways to segment a string

• Segmentation is prevalent in CL
– Examples include finding words: tokenization (particularly for writing systems

that do not use white space)
– Finding sub-word units (e.g., morphemes, or more specialized application:

compound splitting)
– Psycholinguistics: how do people extract words from continuous speech?

• We consider the following problem:
– Given a metric or score to determine the ”best” segmentation
– We enumerate all possible ways to segment, pick the one with the best score

• How can we enumerate all possible segmentations of a string?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 9 / 1

Segmentation
a recursive solution

1 def segment_r(seq):
2 segs = []
3 if len(seq) == 1:
4 return [[seq]]
5 for seg in segment_r(seq[1:]):
6 segs.append([seq[0]] + seg)
7 segs.append([seq[0] + seg[0]] + seg[1:])
8 return segs

• Can you think of a non-recursive solution?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 10 / 1

Segmentation
example/analysis

abcd

a bcd

b cd

c d

[[a]]

[[b]]

[[c]] [[d]]

[[cd], [c, d]]

[[bcd], [bc, d],
[b, cd], [b, c, d]]

[[abcd], [abc, d], [ab, cd], [ab, c, d],
[a, bcd], [a, bc, d], [a, b, cd], [a, b, c, d]]

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 11 / 1



Enumerating segmentations
sketch of a non-recursive solution

s e g m e n t t h i s
0 0 0 0 0 0 1 0 0 0

segment this

s e g m e n t t h i s
0 0 1 0 0 1 0 0 1 0

seg men tth is

• ‘1’ means there is a boundary at this position
• Problem is now enumerating all possible binary strings of length n− 1

(this is binary counting)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 12 / 1

Divide and conquer

• The general idea is dividing the problem into smaller parts until it becomes
trivial to solve

• Once small parts are solved, the results are combined
• Goes well with recursion
• We have already seen a particular flavor: binary search
• The algorithms like binary search are sometimes called decrease and conquer

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 13 / 1

Divide and conquer
General idea

Big problem

Subproblem 1 Subproblem N…

Solution 1 Solution N…

Combined solution

divide

conquer

combine

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 14 / 1

Divide and conquer
an example: nearest neighbors (only a sketch)

• Task: find the closest two points
• Direct solution:
20× 20 = 400 comparisons1

• Divide
• Solve separately (conquer):
10× 10+ 10× 10 = 200 comparisons

• Combine: pick the minimum of the
individual solutions

n = 20n = 10 n = 10

assume we can divide into half easily
overlooking the comparisons across the division

• Gain is higher when n is larger, and we divide further

1Precisely, (20x19)/2 = 190. In this class we focus on ‘order’ of operations, rather than the exact numbers. And, the order of gain by division is the same.
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 15 / 1

Divide and conquer
an example: nearest neighbors (only a sketch)

• Task: find the closest two points
• Direct solution:
20× 20 = 400 comparisons1

• Divide
• Solve separately (conquer):
10× 10+ 10× 10 = 200 comparisons

• Combine: pick the minimum of the
individual solutions

n = 20n = 10 n = 10

assume we can divide into half easily
overlooking the comparisons across the division

• Gain is higher when n is larger, and we divide further

1Precisely, (20x19)/2 = 190. In this class we focus on ‘order’ of operations, rather than the exact numbers. And, the order of gain by division is the same.
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 15 / 1

Divide and conquer
summary

• This is probably the most common pattern
• Divide and conquer does not always yield good results, the cost of merging

should be less than the gain from the division(s)
• Many of the important algorithms fall into this category:

– merge sort and quick sort (coming soon)
– integer multiplication
– matrix multiplication
– fast Furrier transform (FFT)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 16 / 1

Greedy algorithms

• An algorithm is greedy if it optimizes a local constraint
• For some problems, greedy algorithms result in correct solutions
• In others they may result in ‘good enough’ solutions
• If they work, they are efficient
• An important class of graph algorithms fall into this category (e.g., finding

shortest paths, scheduling)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 17 / 1

Greedy algorithms
a simple example: ‘change making’

• We want to produce minimum number of coins for a particular sum s

1. Pick the largest coin c <= s

2. set s = s− c

3. repeat 1 & 2 until s = 0

• Is this algorithm correct?
• Think about coins of 10, 30, 40 and apply the algorithm for the sum value of 60
• Is it correct if the coin values were limited Euro coins?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 18 / 1

Dynamic programming

• Dynamic programming is a method to save earlier results to reduce
computation

• It is sometimes called memoization (it is not a typo)
• Again, a large number of algorithms we use fall into this category, including

common parsing algorithms

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 19 / 1

Dynamic programming
example: Fibonacci

1 def memofib(n, memo = {0: 0, 1:1}):
2 if n not in memo:
3 memo[n] = memofib(n-1) + memofib(n-2)
4 return memo[n]

• We save the results calculated in a dictionary,
• if the result is already in the dictionary, we return without recursion
• Otherwise we calculate recursively as before
• The difference is big, but there is also a ‘neater’ solution without (explicit)

memoization

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 20 / 1

Complexity of Fibonacci algorithm with dynamic pogramming
7

6

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

4

3

2

1 0

1

2

1 0

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

recursion tree for fib(7)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 21 / 1

Summary

• We saw a few general approaches to (efficient) algorithm design
• Designing algorithms is not a mechanical procedure: it requires creativity
• There are other common patterns, including

– Backtracking, Branch-and-bound
– Randomized algorithms
– Distributed algorithms (sometime called swarm optimization)
– Transformation

• Designing algorithms is difficult (possibly, not as difficult as analyzing them)
Next:

• Sorting
• Reading: goodrich2013

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 22 / 1



Nearest neighbors
an exercise

• Define and implement a divide-and-conquer algorithm for nearest neighbor
problem, which divides the input into two until the solution becomes trivial

• Analyze your algorithm and compare to the naive version sketched above (an
implementation was provided in the previous lecture)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.1

Linear search
a little bit of optimization

1 def rl_search(seq, val, i=0):
2 if not seq:
3 return None
4 if val == seq[0]:
5 return i
6 else:
7 return rl_search(seq[1:], val,

i+1)↪→

1 def rl_search2(seq, val, i=0):
2 if i >= len(seq):
3 return None
4 if val == seq[i]:
5 return i
6 else:
7 return rl_search2(seq, val, i

+ 1)↪→

Which one is faster, and why?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.2

Better solutions for Fibonacci numbers

1 def fib2(n):
2 if n <= 1:
3 return (n, 0)
4 a, b = fib2(n - 1)
5 return (a+b, a)

1 def fib3(n):
2 if n <= 1:
3 return n
4 a, b = 0, 1
5 for i in range(0, n):
6 a, b = b, a + b
7 return a

Which one is faster/better?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.3

Segmentation
with yield

1 def segment_r(seq):
2 if len(seq) == 1:
3 yield [seq]
4 else:
5 for seg in segment_r(seq[1:]):
6 yield [seq[0]] + seg
7 yield [seq[0] + seg[0]] + seg[1:]

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.4

Acknowledgments, credits, references

• Some of the slides are based on the previous year’s course by Corina Dima.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.5

blank

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.6

blank

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.7

blank

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.8


