Graphs

Data Structures and Algorithms for Computational Linguistics ill (ISCL-BA-07)

Çağn Çoltekin
ccoltekinasfa.uni-tuebingen.de
Univeraty of Tubingon
Seminar fur Spractiviscenschaft
Winter Semester 2022/23

Introduction

- A graph is collection of vertices (nodes) connected pairwise by edges (arcs).
- A graph is a useful abstraction with many applications
- Most problems on graphs are challenging

Example applications
City map.

- City maps
- Chemical formulas
- Neural networks
- Artificial neural networks

Electronic circuits
Computer networks

- Infectious diseases

Probability distributions

- Word semantics

Example applications
City map

- City maps
- Chemical formulas
- Neural networks

Artificial neural networks

- Electronic circuits
- Computer networks
- Infectious diseases

Probability distributions

- Word semantics

Example applications

City map

City maps

Chemical formulas

- Neural networks

Artificial neural networks

- Electronic circuits

Computer network

- Infectious diseases

Probability distributions
Word semantics

Example applications

City map

- City maps

Chemical formulas

- Neural networks
- Artificial neural networks
- Electronic circuits

Computer network

- Infectious diseases

Probability distributions

- Word semantics

Example applications
City map

- City maps
- Chemical formulas
- Neural networks
- Artificial neural networks

Electronic circuits

- Computer networks
- Infectious diseases
- Probability distributions

Word semantics

Example applications Clyy map

- City maps
- Chemical formulas
- Neural networks
- Artificial neural networks
- Electronic circuits
- Computer networks
- Infectious diseases
- Probability distributions

Word semantics

City map

- City maps
- Chemical formulas
- Neural networks
- Artificial neural networks

Electronic circuits

- Computer network
- Infectious diseases

Probability distributions
Word semantics

Example applications
City map

- City maps
- Chemical formulas
- Neural networks

Artificial neural networks
Electronic circuits

- Computer networks

Infectious diseases

- Probability distributions
- Word semantics

Example applications
City map

- City maps

Chemical formulas

- Neural networks
- Artificial neural networks
- Electronic circuits
- Computer networks
- Infectious diseases
- Probability distributions
- Word semantics

Example applications

 many more...- Food web

Course dependencles

- Social media
- Scheduling
- Games

Academic network

- Inheritance relations in object-oriented programming

Flow charts

- Financial transactions

World's languages
PageRank algorithm

Definition

- A (simple) gnaph G is a pair ($\mathrm{V}, \mathrm{E})$ where
- V is a set of nodes (or vertices),
ordered or unordered pair $\neq y$) is a set of ordered or unordered pairs, edges
- A graph represent a set of objects (nodes) and the relations between them (edges)
- Edges in a graph can be either directed, or undirected
- directed edges (also called arcs) are

2-tuples, or ordered pairs (order is important)
undirected edges are unordered pairs, or
pair sets (order is not important)

Types of graphs

An undirected graph is a graph with only undirected edges

- Transportation (e.g., railway) networks
- A directed graph (digraph) is a graph with only directed edges
- course dependencies

A mixed graph contains both directed and undirected edges

- a city map

Mribersemarameris

More graphs types

A graph is simple if there is only a single edge between two nodes (our earlier definition)

- If the edges of a graph has associated weights, it is called a weeighted gnoph
- A complete graph contains edges from each node to every other node

A bipartite graph has two disjoint sets of nodes, where edges are always across the sets

A graph is called a multi-graph if there are multiple edges (with the same direction) between a pair of nodes

- A graph is called a hyper-graph if a single edge can link more than two nodes

Types of graphs

An undirected graph is a graph with only undirected edges

- Transportation (eg., railway) networks

A directed graph (digraph) is a graph with only directed edges

- course dependencies
- A mixed graph contains both directed and undirected edges

- a city map

Minue semestravias sit
Types of graphs

- An undirected gnaph is a graph with only undirected edges
- Transportation (e.g., railway) networks
- A directed gruph (digraph) is a graph with only directed edges
- course dependencies
- A mixed graph contains both directed and undirected edges
- a city map

Wium sematr zo2ias as

- Two nodes joined by an edge are called the endpoints of the edge
- An edge is called incident to a node if the node is one of its endpoints. Two nodes are adjacent (or they are neighbors) if they are incident to the same edge
- The degree (or valency) of a node is the number of its incident edges
- In a digraph indegree of a node is the number of incoming edges, and outdegree of a node is the number of outgoing edges

A and B are endpoints of edge 1

More definitions

- Two nodes joined by an edge are called the endpoints of the edge
- An edge is called incident to a node if the node is one of its endpoints. Two nodes are adjacent (or they are neighbors) if they are incident to the same edge
- The degree (or valency) of a node is the number of its incident edges
- In a digraph indegree of a node is the number of incoming edges, and outdegree of a node is the number of outgoing edges

edge 1 is incident to A and B

More definitions

- Two nodes joined by an edge are called the endpoints of the edge
- An edge is called incident to a node if the node is one of its endpoints. Two nodes are adjacent (or they are neighbors) if they are incident to the same edge
- The degree (or valency) of a node is the number of its incident edges
- In a digraph indegree of a node is the number

$\operatorname{deg}(\mathrm{A})=4$ of incoming edges, and outdegree of a node is the number of outgoing edges

More definitions

- Two nodes joined by an edge are called the endpoints of the edge
An edge is called incident to a node if the node is one of its endpoints. Two nodes are adjacent (or they are neighbors) if they are incident to the same edge
- The degree (or valency) of a node is the number of its incident edges
- In a digraph indegree of a node is the number of incoming edges, and outdegree of a node is the number of outgoing edges

indeg $(\mathrm{A})=1$, outdeg $(\mathrm{A})=3$

More definitions

- Two edges are parallel if their both endpoints are the same

More definitions

- Two edges are parallel if their both endpoints are the same
- For a directed graph parallel edges are ones with the same direction
- A self-loop is an edge from a node to itself
- A path is an sequence of alternating edges and nodes
- A cycle is a path that starts and ends at the
 same node
- A path or a cycle is a simple if every node on the path is visited only once
- For a directed graph parallel edges are ones with the same direction
- A self-loop is an edge from a node to itself
- A path is an sequence of alternating edges and nodes
- A cycle is a path that starts and ends at the same node
- A path or a cycle is a simple if every node on the path is visited only once

More definitions

- Two edges are parallel if their both endpoints are the same
- For a directed graph parallel edges are ones with the same direction
- A self-loop is an edge from a node to itself
- A path is an sequence of alternating edges and nodes
- A cycle is a path that starts and ends at the
 same node
- A path or a cycle is a simple if every node on the path is visited only once

More definitions

Two edges are parallel if their both endpoints are the same

- For a directed graph parallel edges are ones with the same direction
- A self-loop is an edge from a node to itself
- A path is an sequence of alternating edges and nodes
A cycle is a path that starts and ends at the
 same node
A path or a cycle is a simple if every node on the path is visited only once

More definitions

- Two edges are parallel if their both endpoints are the same
- For a directed graph parallel edges are ones with the same direction
- A self-loop is an edge from a node to itself
- A path is an sequence of alternating edges and nodes
- A cycle is a path that starts and ends at the same node
- A path or a cycle is a simple if every node on the path is visited only once

More definitions

- Two edges are parallel if their both endpoints are the same
- For a directed graph parallel edges are ones with the same direction
- A self-loop is an edge from a node to itself
- A path is an sequence of alternating edges and nodes
- A cycle is a path that starts and ends at the
 same node
- A path or a cycle is a simple if every node on the path is visited only once

More definitions

- A node X is reachable from another (Y) if
there is a (directed) path from Y to X
- A graph is connected if all nodes are
reachable from each other
- A directed graph is strongly connected if all nodes are reachable from each other
- A subgraph a graph formed by a subset of nodes and edges of a graph
- If a graph is not connected, the maximally connected subgraphs are called the connected components

More definitions

- A node X is reachable from another (Y) if
there is a (directed) path from Y to X
- A graph is connected if all nodes are reachable from each other
- A directed graph is strongly connected if all nodes are reachable from each other
- A subgraph a graph formed by a subset of nodes and edges of a graph
- If a graph is not connected, the maximally connected subgraphs are called the connected components.

More definitions

- A node X is reachable from another (Y) if there is a (directed) path from Y to X
- A graph is connected if all nodes are reachable from each other
- A directed graph is strongly connected if all nodes are reachable from each other
- A sulgraph a graph formed by a subset of nodes and edges of a graph
- If a graph is not connected, the maximally connected subgraphs are called the connected components

More definitions

A node X is reachable from another (Y) if there is a (directed) path from Y to X

- A graph is connected if all nodes are reachable from each other
- A directed graph is strongly connected if all nodes are reachable from each other
- A subgraph a graph formed by a subset of nodes and edges of a graph
- If a graph is not connected, the maximally connected subgraphs are called the connected components

\qquad whursememamias on

More definitions

- A sparning subgraph of a graph is a subgraph that includes all nodes of the graph
A tree is a connected graph without cycles
- A spanning tree is a spanning subgraph which is a tree
- A forest is a disconnected acyclic graph

More definitions

A spanning subgraph of a graph is a subgraph that includes all nodes of the graph

- A tree is a connected graph without cycles
- A spanning tree is a spanning subgraph which is a tree
- A forest is a disconnected acyclic graph

Some properties

sum of degrees

- For an undirected graph with m edges and set of nodes V

$$
\sum_{v \in \mathrm{~V}} \operatorname{deg}(v)=2 m
$$

- All edges are counted twice for each node they are incident to
- The total contribution of each node is twice its degree
- For a directed graph with m edges and set of nodes V

$$
\sum_{v \in V} \text { indeg }(v)=\sum_{v \in V} \text { outdeg }(v)=m
$$

More definitions

A node X is reachable from another (Y) if there is a (directed) path from Y to X

- A graph is connected if all nodes are reachable from each other
- A directed graph is strongly connected if all nodes are reachable from each other
- A subgraph a graph formed by a subset of nodes and edges of a graph
- If a graph is not connected, the maximally connected subgraphs are called the connected components

Some properties

relation between the number of edges and nodes

- For a simple undirected graph with n nodes and m edges

$$
\mathrm{m} \leqslant \frac{\mathrm{n}(\mathrm{n}-1)}{2}
$$

- If the graph is simple
- there are no parallel edge
- there are no parallel edge
- there are no self loops
- the maximum degree

$$
2 m \leqslant n(n-1) \Rightarrow m \leqslant \frac{n(n-1)}{2}
$$

- For a directed graph with n nodes and m edges

The graph ADT

- A graph is a collection of nodes and edge
 - Basic operations include

add_node(v) add a new node
senove_node (v) temove an
renove_node (v) remove an existing node
adjacent (u, v) return true if the nodes are adjacent (for a digraph true only if there is a directed link from u to v)
neighbors (v) enumerate the neighbors of the node (for a digraph we list the nodes reachable through outgoing edges by default)
renove_edge (u, v) remove an existing edge
add_edge (u, v) add a new edge
rodes() enumerate the nodes in the graph
edges () enumerate the edges in the graph

- We keep a simple a simple list of edges (and possibly nodes)
- Simple structure, complexity of
some operations (n nodes, m edges):
add_edge(v) $O(1)$
renove_edge (v) $O(m)$
renove_node (v) $\mathrm{O}(\mathrm{m})$
adjacent(u,v) O(m)
neighbors(v) $\mathrm{O}(\mathrm{m})$

\qquad

Interesting problems on graphs

- Is there a (directed) path between two nodes?

What is the shortest path between two nodes?

- Is there a cycle in the graph?

Is there a cycle that uses each edge exactly once? (Eulerian path)
Is there a cycle that uses each node exactly once? (Hamiltonian path)

- Are all nodes of the graph connected?
- Is there a node that breaks the connectivity if removed?

Is the graph planar: can it be drawn without crossing edges?
Are two graphs isomorphic (have the same structure)?

Adjacency matrix

- We keep simple lists for nodes and edges
- Complexity of some operations. add_node(v) $\mathrm{O}(\mathrm{n})$
remove_node (v) O(n)
adjacent (u,v) $O(1)$
naighbors(v) O(n)
- Graphs are data structures with many applications
- Reading on graphs: goodrich2013,

Next:

- Graph traversals
- Reading: goodrich2013
- What is the importance of a web page, based on the links pointing to it?

Acknowledgments, credits, references

The map on slide ?? is from OpenStreetMap, The other images are from Wikipedia, except the infectious disease graph which comes from Thurner et al. (2020).
\qquad

\qquad

Summary

\square

