
FSA and regular languages
Data Structures and Algorithms for Computational Linguistics III

(ISCL-BA-07)

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2022/23

version: 6356ea0 @2023-01-18

Languages and automata

• Recognizing strings from a language defined by a grammar is a fundamental
question in computer science

• The efficiency of computation, and required properties of computing device
depends on the grammar (and the language)

• A well-known hierarchy of grammars both in computer science and
linguistics is the Chomsky hierarchy

• Each grammar in the Chomsky hierarchy corresponds to an abstract
computing device (an automaton)

• The class of regular grammars are the class that corresponds to finite state
automata

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 1 / 1

How to describe a language?
Formal grammars

A formal grammar is a finite specification of a (formal) language.
• Since we consider languages as sets of strings, for a finite language, we can

(conceivably) list all strings
• How to define an infinite language?
• Is the definition {ba,baa,baaa,baaaa, . . .} ‘formal enough’?
• Using regular expressions, we can define it as baa∗

• But we will introduce a more general method for defining languages

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 2 / 1

Phrase structure grammars

• A phrase structure grammar is a generative device
• If a given string can be generated by the grammar, the string is in the language
• The grammar generates all and the only strings that are valid in the language
• A phrase structure grammar has the following components

Σ A set of terminal symbols
N A set of non-terminal symbols

S ∈ N A special non-terminal, called the start symbol
R A set of rewrite rules or production rules of the form:

α → β

which means that the sequence α can be rewritten as β (both α and β are
sequences of terminal and non-terminal symbols)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 3 / 1

Chomsky hierarchy and automata

Regular grammars Finite state automataA→a A→a
A→aB A→B a

Context-free grammars Pushdown automataA→α

Context-sensitive grammars Linear-bounded automataα A β→α γ β

Unrestricted grammars Turing machinesα→β

Grammar class AutomataRules

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 4 / 1

Regular grammars: definition
A regular grammar is a tuple G = (Σ,N, S,R) where
Σ is an alphabet of terminal symbols
N are a set of non-terminal symbols
S is a special ‘start’ symbol ∈ N

R is a set of rewrite rules following one of the following patterns (A,B ∈ N,
a ∈ Σ, ϵ is the empty string)

Left regular

1. A → a

2. A → Ba

3. A → ϵ

Right regular

1. A → a

2. A → aB

3. A → ϵ

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 5 / 1

Regular languages: some properties/operations

L1L2 Concatenation of two languages L1 and L2: any sentence of L1 followed by
any sentence of L2

L∗ Kleene star of L: L concatenated with itself 0 or more times
LR Reverse of L: reverse of any string in L

L Complement of L: all strings in Σ∗
L except the ones in L (Σ∗

L − L)
L1 ∪ L2 Union of languages L1 and L2: strings that are in any of the languages
L1 ∩ L2 Intersection of languages L1 and L2: strings that are in both languages

Regular languages are closed under all of these operations.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 6 / 1

Three ways to define a regular language

• A language is regular if there is regular grammar that generates/recognizes it
• A language is regular if there is an FSA that generates/recognizes it
• A language is regular regular if we can define a regular expressions for the

language

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 7 / 1

Regular expressions

• Every regular language (RL) can be expressed by a regular expression (RE),
and every RE defines a RL

• A RE e defines a RL L(e)
• Relations between RE and RL

– L(∅) = ∅,
– L(ϵ) = ϵ,
– L(a) = a

– L(ab) = L(a)L(b)
– L(a*) = L(a)∗

– L(a|b) = L(a) ∪ L(b)
(some author use the notation a+b,
we will use a|b as in many practical
implementations)

where, a,b ∈ Σ, ϵ is empty string, ∅ is the language that accepts nothing (e.g.,
Σ∗ − Σ∗)

• Note: no standard complement and intersection in RE

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 8 / 1

Regular expressions
and some extensions

• Kleene star (a*), concatenation (ab) and union (a|b) are the basic operations
• Parentheses can be used to group the sub-expressions. Otherwise, the priority

of the operators are as listed above: a|bc* = a|(b(c*))
• In practice some short-hand notations are common

– . = (a1|...|an),
for Σ = {a1, . . . ,an}

– a+ = aa*
– [a-c] = (a|b|c)

– [^a-c] = . - (a|b|c)

– \d = (0|1|...|8|9)

– …

• And some non-regular extensions, like (a*)b\1 (sometimes the term regexp is
used for expressions with non-regular extensions)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 9 / 1

Some properties of regular expressions
Useful identities for simplifying regular expressions

• u|(v|w) = (u|v)|w
• u|v = v|u
• u(v|w) = uv|uw
• u|∅ = u
• uϵ = ϵu = u
• ∅u = ∅
• u(vw) = (uv)w
• ∅* = ϵ

• ϵ* = ϵ

• (u*)* = u*
• u|u = u
• (u|v)* = (u*|v*)*
• u*|ϵ = u*

An exercise
Simplify a|ab*
a|ab* = aϵ|ab*

= a(ϵ|b*)
= ab*

Note: some of these are direct statements of Kleene
algebra, others can be derived from them.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 10 / 1

Converting regular expressions to FSA

ab

0 2 3a b

a*

0

a

a|b
0 2

a

b

• For more complex expressions, one can
replace the paths for individual symbols
with corresponding automata

• Using ϵ transitions may ease the task
• The reverse conversion (from automata to

regular expressions) is also easy:
– identify the patterns on the left, collapse

paths to single transitions with regular
expressions

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 11 / 1

Exercise
convert b((ab)*|a) to an NFA

0 1 2

3

4

b (ab)*|a

a

(ab)*
ϵ ϵ

aba b

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 12 / 1

Exercise
convert b((ab)*|a) to an NFA

0 1 2

3

4

b (ab)*|a

a

(ab)*
ϵ ϵ

aba b

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 12 / 1

Exercise
convert b((ab)*|a) to an NFA

0 1 2

3

4

b (ab)*|a

a

(ab)*
ϵ ϵ

aba b

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 12 / 1

Exercise
convert b((ab)*|a) to an NFA

0 1 2

3

4

b (ab)*|a

a

(ab)*
ϵ ϵ

aba b

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 12 / 1

Exercise
convert b((ab)*|a) to an NFA

0 1 2

3

4

b (ab)*|a

a

(ab)*
ϵ ϵ

aba b

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 12 / 1

Converting FSA to regular expressions

0 1 2 3

a

b

b

b

a

a aa

b

ba

ba

bb

ab

(b|bb)(ab)∗(b|aa)

a(ab)∗b

a(ab)∗aa

a(ab)∗aa|a(ab)∗b|b

(b|bb)(ab)∗(b|aa)|ba

a∗((b|bb)(ab)∗(b|aa)|ba)(a(ab)∗aa|a(ab)∗b|b)∗

• The general idea: remove (intermediate) states, replacing edge labels with
regular expressions

An exercise: simplify the resulting regular expressions

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 13 / 1

Converting FSA to regular expressions

0 1 2 3

a

b

b

b

a

a aa

b

ba

ba

bb

ab

(b|bb)(ab)∗(b|aa)

a(ab)∗b

a(ab)∗aa

a(ab)∗aa|a(ab)∗b|b

(b|bb)(ab)∗(b|aa)|ba

a∗((b|bb)(ab)∗(b|aa)|ba)(a(ab)∗aa|a(ab)∗b|b)∗

• The general idea: remove (intermediate) states, replacing edge labels with
regular expressions

An exercise: simplify the resulting regular expressions

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 13 / 1

Converting FSA to regular expressions

0 1 2 3

a

b

b

b

a

a aa

b

ba

ba

bb

ab

(b|bb)(ab)∗(b|aa)

a(ab)∗b

a(ab)∗aa

a(ab)∗aa|a(ab)∗b|b

(b|bb)(ab)∗(b|aa)|ba

a∗((b|bb)(ab)∗(b|aa)|ba)(a(ab)∗aa|a(ab)∗b|b)∗

• The general idea: remove (intermediate) states, replacing edge labels with
regular expressions

An exercise: simplify the resulting regular expressions

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 13 / 1

Converting FSA to regular expressions

0 1 2 3

a

b

b

b

a

a aa

b

ba

ba

bb

ab

(b|bb)(ab)∗(b|aa)

a(ab)∗b

a(ab)∗aa

a(ab)∗aa|a(ab)∗b|b

(b|bb)(ab)∗(b|aa)|ba

a∗((b|bb)(ab)∗(b|aa)|ba)(a(ab)∗aa|a(ab)∗b|b)∗

• The general idea: remove (intermediate) states, replacing edge labels with
regular expressions

An exercise: simplify the resulting regular expressions

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 13 / 1

Converting FSA to regular expressions

0 1 2 3

a

b

b

b

a

a aa

b

ba

ba

bb

ab

(b|bb)(ab)∗(b|aa)

a(ab)∗b

a(ab)∗aa

a(ab)∗aa|a(ab)∗b|b

(b|bb)(ab)∗(b|aa)|ba

a∗((b|bb)(ab)∗(b|aa)|ba)(a(ab)∗aa|a(ab)∗b|b)∗

• The general idea: remove (intermediate) states, replacing edge labels with
regular expressions

An exercise: simplify the resulting regular expressions

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 13 / 1

Converting FSA to regular expressions

0 1 2 3

a

b

b

b

a

a aa

b

ba

ba

bb

ab

(b|bb)(ab)∗(b|aa)

a(ab)∗b

a(ab)∗aa

a(ab)∗aa|a(ab)∗b|b

(b|bb)(ab)∗(b|aa)|ba

a∗((b|bb)(ab)∗(b|aa)|ba)(a(ab)∗aa|a(ab)∗b|b)∗

• The general idea: remove (intermediate) states, replacing edge labels with
regular expressions

An exercise: simplify the resulting regular expressions

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 13 / 1

Two example FSA
what languages do they accept?

L1 = L(M1)

0 1

b
a

a

bM1

Odd number of a’s over {a,b}.

L2 = L(M2)

M2

0 1

a
b

b

a

Odd number of b’s over {a,b}.

We will use these languages and automata for demonstration.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 14 / 1

Concatenation
L1

0 1

b
a

a

b

L2

0 1

a
b

b

a

L1L2

0 1 2 3

b
a

a

b

ϵ

a
b

b

a

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 15 / 1

Kleene star

L1

0 1

b
a

a

b

L∗1

0’ 0 1ϵ

b
a

a

b

ϵ

• What if there were more than one accepting states?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 16 / 1

Reversal

L1

0 1

b
a

a

b

LR1

0 1

b

a

a
b

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 17 / 1

Complement

L1

0 1

b
a

a

b

L1

0 1

b
a

a

b

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 18 / 1

Union

L1 ∪ L2

0’

01 11

b
a

a

b

02 12

a
b

b

a

ϵ

ϵ

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 19 / 1

Intersection

L1

L2

L1 ∩ L2

0

1

b

a a

b

0 1

a
b
b

a

00 01

10 11

b
b

b
b

a a a a

…or

L1 ∩ L2 = L1 ∪ L2

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 20 / 1

Closure properties of regular languages

• Since results of all the operations we studied are FSA: Regular languages are
closed under

– Concatenation
– Kleene star
– Reversal
– Complement
– Union
– Intersection

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 21 / 1

Wrapping up

• FSA and regular expressions express regular languages
• Regular languages and FSA are closed under

– Concatenation
– Kleene star
– Complement

– Reversal
– Union
– Intersection

• To prove a language is regular, it is sufficient to find a regular expression or
FSA for it

• To prove a language is not regular, we can use pumping lemma (see
Appendix)

Next:
• FSTs

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 22 / 1

Acknowledgments, credits, references

• The classic reference for FSA, regular languages and regular grammars is
hopcroft1979 (there are recent editions).

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.1

Another exercise on intersection
Construct the intersection of the automata below (adapted from hopcroft2007, Fig. 4.4)

0 1

b

a

a, bM1

M2

0 1

a

b

a, b

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.2

Is a language regular?
— or not

• To show that a language is regular, it is sufficient to find an FSA that
recognizes it.

• Showing that a language is not regular is more involved
• We will study a method based on pumping lemma

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.3

Pumping lemma
intuition

a b c d e
k

l

m

• What is the length of longest string generated by this FSA?
• Any FSA generating an infinite language has to have a loop (application of

recursive rule(s) in the grammar)
• Part of every string longer than some number will include repetition of the

same substring (‘cklm’ above)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.4

Pumping lemma
definition

For every regular language L, there exist an integer p such that a string x ∈ L can
be factored as x = uvw,

• uviw ∈ L, ∀i ⩾ 0

• v ̸= ϵ

• |uv| ⩽ p

a b c d e
k

l

m

u

v

w

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.5

How to use pumping lemma

• We use pumping lemma to prove that a language is not regular
• Proof is by contradiction:

– Assume the language is regular
– Find a string x in the language, for all splits of x = uvw, at least one of the

pumping lemma conditions does not hold
• uviw ∈ L (∀i ⩾ 0)
• v ̸= ϵ

• |uv| ⩽ p

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.6

Pumping lemma example
prove L = anbn is not regular

• Assume L is regular: there must be a p such that, if uvw is in the language
1. uviw ∈ L (∀i ⩾ 0)
2. v ̸= ϵ

3. |uv| ⩽ p

• Pick the string apbp

• For the sake of example, assume p = 5, x = aaaaabbbbb

• Three different ways to split

a︸︷︷︸
u

aaa︸︷︷︸
v

abbbbb︸ ︷︷ ︸
w

violates 1

aaaa︸ ︷︷ ︸
u

ab︸︷︷︸
v

bbbb︸ ︷︷ ︸
w

violates 1 & 3

aaaaab︸ ︷︷ ︸
u

bbb︸︷︷︸
v

b︸︷︷︸
w

violates 1 & 3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.7

blank

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.8

blank

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.9

blank

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.10

blank

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.11

