Minimization of FSA

Data Structures and Algorithms for Computational Linguistics ill (ISCL-BA-17)

Çağn Çoltekin
ccoltekinasfa.uni-tuebingen.de

> Univeraty of Tubingon Seminaf fur Sprachwisenschaft

Winter Semester 2002 /23

DFA minimization

- For any regular language, there is a unique minimal DFA

By finding the minimal DFA, we can also prove equivalence (or not) of different PSA and the languages they recognize
In general the idea is:

- Throw away unreachable states (easy)
- Merge equivalent states
- There are two well-known algorithms for minimization:
-Hopcroft's algorithm: find and eliminate equivalent states by partitioning the
- Brzozowski's algorithm: 'double reversal'

Finding equivalent states

Intuition

The edges leaving the group of nodes are identical. Their right languages are the same.

Minimization by partitioning

Create a state-by-state table, mark disfitrguashable pairs: $\left(q_{1}, q_{2}\right)$ such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right)\right)$ is a distinguishable pair for any $x \in \Sigma$

Minimization by partitioning

Create a state-by-state table, mark distitigyisshinde pairs: $\left(q_{1}, q_{2}\right)$ such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right)\right)$ is a distinguishable pair for any $x \in \Sigma$

Minimization by partitioning

Create a state-by-state table, mark distingurishable pairs: $\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)$ such that $\left(\Delta\left(\mathrm{q}_{1}, \mathrm{x}\right), \Delta\left(\mathrm{q}_{2}, \mathrm{x}\right)\right)$ is a distinguishable pair for any $\mathrm{x} \in \Sigma$

Whar Semeramias

Minimization by partitioning
tabular version

- Create a state-by-state table, mark distinguishichle pairs: $\left(q_{1}, q_{2}\right)$ such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right)\right)$ is a distinguishable pair for any $x \in \Sigma$

Minimization by partitioning

Create a state-by-state table, mark uistugrashuble pairs: $\left(q_{1}, q_{2}\right)$ such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right)\right)$ is a distinguishable pair for any $x \in \Sigma$

Minimization by partitioning
tabular version

Create a state-by-state table, mark distinguifshable pairs: $\left(q_{1}, q_{2}\right)$ such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right)\right)$ is a distinguishable pair for any $x \in \Sigma$

Minimization by partitioning

Create a state-by-state table, mark disfing yusshable pairs: $\left(q_{1}, q_{2}\right)$ such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right)\right)$ is a distinguishable pair for any $\mathrm{x} \in \Sigma$

Minimization by partitioning

- Create a state-by-state table, mark distingurishtuble pairs: $\left(q_{1}, q_{2}\right)$ such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right)\right)$ is a distinguishable pair for any $x \in \Sigma$

Minimization by partitioning
tabular version

- Create a state-by-state table, mark distingurishinale pairs: $\left(q_{1}, q_{2}\right)$ such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right)\right)$ is a distinguishable pair for any $\mathrm{x} \in \Sigma$

Minimization by partitioning

- Create a state-by-state table, mark distingurishable pairs: (q_{1}, q_{2}) such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right]\right)$ is a
distinguishable pair for any $x \in \mathcal{L}$ distinguishable pair for any $x \in \Sigma$

- Merge indistinguishable states
- The algorithm can be improved by choosing which cell to visit carefully

An exercise

find the minimum DFA for the automaton below

Minimization by partitioning

Create a state-by-state table, mark disfing guishable pairs: $\left(q_{1}, q_{2}\right)$ such that $\left(\Delta\left(q_{1}, x\right), \Delta\left(q_{2}, x\right)\right)$ is a distinguishable pair for any $\mathrm{x} \in \mathcal{\Sigma}$

\qquad

Minimization by partitioning

Niner semerr201/3 $4 / 1$

Brzozowski's algorithm
double reverse (r), determinize (d)

Minimization algorithms

final remarks

- There are many versions of the 'partitioning' algorithm. General idea is to form equivalence classes based on right-language of each state.
- Partitioning algorithm has $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ complexity
- Double reversal' algorithm has exponential worst-time complexity
- Double reversal algorithm can also be used with NFAs (resulting in the minimal equivalent DFA - NFA minimization is intractable)
- In practice, there is no clear winner, different algorithms run faster on different input
- Reading suggestion: hopcroft1979, jurafsky 2009

Next:

- FST
- FSA and regular languages

Whar semencmina

Acknowledgments, credits, references

-	

