Finite state automata
for Computational Linguistics I
7)

Data Structures and Algorith
a

agn Coltekin
ccoltakindsfs. uni-tuebingen.do

Univesity of Tabingen
Seminar 0 Sprachiisanschatt.

Winter Semester 2022/23

Why study finite-state automata?

« There are many applications
~ Electronic ircuit design
~ Workflow management
~ Games.

- Pattern matching

But more impartantly -)
~ Tokenization, stemming
- Morphological analysis’
= Spell checkiny
- Shallow parsing/chunking

Finite-state automata (FSA)

.A in one of a finite- ina given time
« The machine changes its state based on its input
« Every regular language is generated /recognized by an FSA
« Every FSA generates/recognizes a regular language
« Two flavors:
~ Deterministi iite automata (DFA)
~ Nonv-determiistc fniteautomata (NFA)
Note: the NFA is a superset of DFA.

FSA as a graph

+ AnFSA isa directed graph
« States are represented as nodes.

« Transitions are labeled edges

« One of the states is the inital state
+ Some states are accepting states.

transition

initial state

DFA: formal definition

Formally,a finite state automaton, M, is a tuple (£, Q. qo. F A) with
£ is the alphabet, a finite setof symbols
Q a finite set of states
o is the start state, qo & Q
F is the set of final states, F € Q
A isa function that takes a sate and a symbol in the alphabet, and retuns
another state (41 Q x £ Q)

At any state and for any input,
a DFA has a single well-defined action to take.

DFA: formal definition

anexampe
I ={a,b}
Q =(40.41.42)
@ =do
P =)
A ={(0,0) =gz (qo.b] =
(qra)—rax (anb) - ar)

Another note on DFA

ertororsnk state

« Is this FSA deterministic?

« Tomake all transitions well-defined,
we can add a sink (or error) state

« For brevity, we skip the explicit error
state

~ In that case, when we reach a dead
end, recognition fails

DFA: the transition table

marks the start state
‘marks the accepting state(s)

DEFA: the transition table
transition table
symbol
b

1
1
3
3

marks the start state

marks the accepting state(s)

DFA recognition
Startat qo

Process an input symbol, move
accordingly

Accept if in a final state at the end of
the input

DFA recognition
1. Startat g
2. Process an input symbol, move
accordingly

3. Acceptf ina final state at the end of
the input

DFA recognition

1. Startat g
2. Process an input symbol, move
accordingly
3. Acceptif in a final state at the end of
the input

DFA recognition
1. Startat g
2. Process an input symbol, move
accordingly
3. Acceptif in a final state at the end of
the input

DFA recognition
1 Startat s

2. Process an input symbol, move
accordingly

DFA recognition
1. Startatqp
2. Process an input symbol, move
accordingly

3. Accept f in a final state at the end of
the input

What s the complexity of the
algorithm?
How about inputs:

~ bbby

A few questions

« Whatis the language recognized by
FSA?

+ Can you draw a simpler DFA for the
same language?

+ Draw a DFA recognizing strings
with even number of ‘a’s over
£={a.b)

Non-deterministic finite automata

A non-deterministic fnite state automaton, M, is a tuple (£, Q. qo, F.) with
£ is the alphabet, a finite st of symbols
Q a finite set of states
o is the start state, qo € Q
F is the set of final states, F € Q
A s function from Q, Z) to P(Q), power set of Q (A: Q x I = P(Q))

An example NFA

02

+ We have nondeterminism, e.g, if the first input is @, we need to choose
between states 0 or 1

« Transition table cells have sefs of states

Dealing with non-determinism

« Follow one of the links, store alternatives, and backtrack on failure
« Follow all options in paralle]

NFA recognition

assearch (with backtracking)

1. Startatqo
2. Take the next input, place all
possible actions to an agenda
3. Get the next action from the agenda,
act
4. Atthe end of input
ifin an accepting state
Refect notin acceping state & agenda

empty
Backtrack otherwise

mput| 36]3]

NFA recognition
2 serch (withbackiracking)
ab

1 Startat qo
2. Take the next input, place all
‘possible actions to an agenda

3. Get the next action from the agenda,

4. Atthe end of input
Accept if in an accepting state
Rejeet notin accepting state & agenda

empty
Backtrack otherwise.

Input:

NFA recognition

asscarch (with backiracking)
ab

1. Startat qo

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,

4. Atthe end of input

Accept ifin an accepting state

Refect notin acceping state & agenda

empty
Backtrack otherwise

|

NFA recognition
a serch (with buckiracking)

1. Startat qo

2. Take the next input, place all
possible actions to an agenda

Get the next action from the agenda,

act

Atthe end of input
Accept ifin an accepting state
Reject notin accepting sate & agenda

empty
Backtrack otherwise.

NFA recognition

s search (vith backtracking)

1. Startat go

2. Take the next input, place all
possible actions to an agenda

Gt the next action from the agenda,

. Atthe end of input

Accept ifin an accepting state

Reject not i accepting state & agenda

ermpr
Backirack otherwise

NFA recognition

assearch (with backtracking)

1. Surtat go

2. Take the next input, place all
possible actions to an agenda

Get the next action from the agenda,

act

4. Atthe end of input

Accept ifin an accepting stat

Reject notin accepting sate & agenda
empty

Backtrack otherwise

tmput[3 o3

NFA recognition
as search (it Bckiackin)
ab
1. Startatgo
2. Take the nextinput, place all

possible actions to an agenda
3. Get the next action from the agenda,
act
4 Atthe end of input
Accept ifin an accepting state
Reject notin accepting state & agenda
empty

Backtrack otherwise

put (a6]

NFA recognition
st (whlh eckocking)
ap

1 Sartat s

2. Take the next input, place all
possible actons to an g

Gt the nextaction fromthe agenda,

act

4. Atthe end of input
Accept ifin an accepting state
Reject not in accepting sate & agenda
ty

empty
Backtrack otherwise.

NFA recognition

assearch (with ackiracking)

1 Startatgo

2 Take the next input,place il
possible actions toan agend

3. Get the et action rom the agenda,
act

2 5. Atthe end of input

N Accept if in an accepting sate

[9) Reect not i acceping sate & genc

3 .v

empt
Backirack otherwise

NFA recognition NFA recognition
a5 sarch (it backiacking) o seach (with Backtrscing)
ab ab
1 Strtat g

2. Take the next input, place all
possible actions to an agenda
3. Get the next action from the agenda,
act
4 Atthe end of input
Accept ifin an accepting state
Reject notin accepting sate & agenda

empty
Backtrack otherwise.

nnn

1. Startat qo

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act

4. Atthe end of input

Accept. if in an aceepting state

Reject not in accepting state & agenda

empty
Backtrack otherwise

NFA recognition
a3 sarch (it bckiacking)
ab

1. Startat g0

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act

4. Atthe end of input

Accept ifn an acceptingstat

Refect notn accepting state & agenda

empty
Backtrack otherwise.

nnn

NFA recognition

assearch (with backiracking)

1. Startatqo

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,

4. Atthe end of input
Accept ifn an accepting state
Refect notin acceping state & agenda

empty
Backtrack otherwise

NFA recognition NFA recognition as s
2 serch (withbackiracking) summary
ab
1. Startat g0 Worsts o -
o ot place + Worst time complexity is exponentia
2. Take the next input, place all O e R T TR T
possible actions to an agenda ol e e demen
3. Get the next action from the agenda, DT Tl s SOt e s g it e s
+ A queue would result n breadsh-firs search
4. Attheend of input « Ifwe have a easonable heurisic A* search may be an option
Accept i inan acepting state . s
Refect notn accpting stae & agenda
i empty
Backirack otherwise
Input

NFA recognition

paale verson

1. Startat gy

2. Take the next input, mark all possible
nextstates

3. If an accepting state is marked at the end
of the input, accept

input-[a[b]a]b]

NFA recognition
parlel vesion
1. Startat qo
2. Take the next input, markall possible

next states

1 an accepting state is marked at the end
of the input, accept

input:[a [b[a]b]

NFA recognition NFA recognition
poll erson parsli verion
1. Sartat g

2. Take the next input, mark all possible.
next states

1. Startat qo

2. Take the next input, markall possible
next states

3. 1f an accepting state is marked at the end.
of the input, accept

3. 1fan accepting state is marked at the end
of the input, accept

|

NFA recognition NFA recognition
potl verson paratt version
1. Startat go ab 1. Startat go
2 Take the next input, markall possible 2. Take the nextinput, mark all possble
nextstates nextstates

3. If an accepting state is marked at the end

3. If an accepting state s marked at the end
of the input, accept

of the input, accept

Note: the process is deterministic, and
Sinite-state.

M nnon

An exercise One more complication: ¢ transitions

Construct an NFA and a DFA for the language over £ = {a, b) where all sen- . NFA, ¢-NFA, all input
tences end with ab. symbol, indicated by an c-transition (somefimes called a M-ransition)
« Any e-NEA can be converted to an NFA

DFA: O J
: a
e-transitions need attention NFA-DFA equivalence

+ The language recognized by every NFA is recognized by some DFA
« The set of DFA is a subset of the set of NFA (a DFA is also an NFA)
+ The same s true for &-NFA

+ All recognize/generate regular languages

« NEA can automatically be converted to the equivalent DFA

« How does the (depthfrst) NFA recognition algorithm we described earler
work on this automaton?
« Canwe do without ¢ transitions?

Why do we use an NFA then? Summary
+ NFA (or &-NFA) are often easier to construct
~ Intutive for humans (e carle exercise)
- o NFA rather than DFA, i, regul
expressions + FSA are efficient tools with many applications
+ NFA may require less memory (fewer states) e T U (e o)
(A aquick exercise — and 3 not-so-quick one « DEA time
1. Construct (draw) an NFA for the language over I = {a, b, such that dth N Lpsuitlozy L2
symbol from the end is an a. Next
" + FSA determinization, minimization

Wb b ab + Reading suggestion: hoperoft1979 (and is successive editions), jurafsky2009
4’8—.—*.—'.—' O—0—06

2. Construct a DFA for the same language

Acknowledgments, credits, references ¢ removal

« tntaition: if O~~~ , then O,
« We start with finding the e-closure o all states
- cclosure(ao)
~ exlosure(a:) = (a1
- exlosure(qz) = az)
« For each incoming arc €5, 4 to each node q;
- add anew arc (g, gy) forall g € e-closure(e
~ remove all ¢(ay,) for alla. < e-closure(a; 3
« c-transitions from the inital state, and to/from the U
accepting states need further attention (next slide)
« Remove useless states if any

4o} a
@)

€ removal

+ Compute the e-closure

+ For each incoming arc ((q. q;) to each node q;
~ add tq.,av) o al q € e-closurel(q;)
i£ 4. is inital, mark g, initi
~ if g, is accepting, mark q; acceptin
removeall (5, qv) or all g € e-closure(q;)

	Finite state automata
	Introduction
	Why study finite-state automata?
	Finite-state automata (FSA)
	FSA as a graph

	Deterministic finite automata
	DFA: formal definition
	DFA: formal definition
	Another note on DFA
	DFA: the transition table
	DFA: the transition table
	DFA recognition
	DFA recognition
	DFA recognition
	DFA recognition
	DFA recognition
	DFA recognition
	A few questions

	Non-deterministic finite automata
	Non-deterministic finite automata
	An example NFA
	Dealing with non-determinism
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition as search
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	An exercise
	One more complication: transitions
	-transitions need attention
	NFA–DFA equivalence
	Why do we use an NFA then?

	
	Summary

	Appendix
	Acknowledgments, credits, references
	 removal
	 removal

