String edit distance

Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-17)

Cağn Çoltekin

cooltekinasfs.uni-tuebingen.de

Univeraty of Tubings.

Winter Semester 2022/23

Edit distance

In many applications, we want to know how similar (or different) two string are

- Comparing two files (e.g., source code)
- Comparing two DNA sequences
- Spell checking
- Approximate string matching
- Determining similarity of two languages
- Machine translation
- The solution is typically formulated as the (inverse) cost of obtaining one of the strings from the other through a number of edit operations
- Once we obtain the optimal edit operations, we may (depending on the edit operations) also be able to determine the optimal alignment between the strings

A family of edit distance problems

- The same overall idea applies to a number of well-known problems/solutions that differ in the type of operations allowed
- Hamming distance: only replacements
- Lorgest commun subsequence: (LCS) insertions and deletion
- Lexenshtein distance insertions, deletions and substitutions
- Levenshtein-Dimermu distance insertions, deletions and substitutions and transpositions (swap) of adjacent symbols
- Naive solutions to all (except Hamming distance) have exponential time complexity
- Polynomial-time solution can be obtained using dynamic prognamoning
- But cannot handle sequences of different lengths (consider hygene - hiugeine)

LCS: a naive solution

A simple solution is

1. Enumerate all subsequences of the first string
2. Check if it is also a subsequence of the second string

- There are exponential number of subsequences of a string
- the string abc has 8 subsequences:
- abcc nothing removed
- abb, ac, $k c$ individual elements are removed - $\begin{aligned} & a, b, c, \text { length- } 2 \text { subsequences ar } \\ & c \text { (empty string): abc removed }\end{aligned}$
- For alkd, we have subsequences of abc once with, and once without d
- Each additional symbol doubles the number of subsequences
- For strings of size n and m, the complexity of the brute-force algorithm is $\mathrm{O}\left(2^{\mathrm{n}} \mathrm{m}\right)$
It has wide-ranging applications from source-code comparison to bioinformatics (e.g., DNA sequencing)

LCS: recursive definition

Consider two strings $X x, Y y$ and their LCS $Z z(X, Y, Z$ are possibly empty strings, x, y, z are characters)

- If $x=y$, then this character has to be part of the LCS, $x=y=z$, and Z must be the LCS of X and Y
- If $x \neq y$, there are three cases
$-x \neq y \neq z=Z z$ is also the LCS of X and Y
$-x=z: Z z$ is also the LCS of $X x$ and Y
$-y=z: Z z$ is also the LCS of X and $Y y$
- This leads to following recursive definition:

$$
\operatorname{LCS}\left(X x, Y_{y}\right)= \begin{cases}\operatorname{LCS}(X, Y \mid x & \text { if } x=y \\ \text { longer of } \operatorname{LCS}(X x, Y) \text { and } \operatorname{LCS}\left(X, Y_{y}\right) & \text { otherwise }\end{cases}
$$

LCS: dynamic programming
general sketch

- To calculate $\operatorname{LCS}\left(X_{i}, Y_{i}\right)$, the LCS of string X up to index i, and the LCS of string Y up to index \mathfrak{j}, we (may) need
$-\operatorname{LCS}\left(\mathrm{X}_{1-1}, \mathrm{Y}_{1-1}\right)$
$-\operatorname{LCS}\left(\mathrm{X}_{\text {Li-1 }} Y_{i-1}\right)$
$-\operatorname{LCS}\left(X_{i-1}, Y_{i}\right)$
$-\operatorname{LCS}\left(X_{i}, Y_{1-1}\right)$
- If we store the above three values, we need only $\mathrm{i} \times j$ operations
- In the standard dynamic programming algorithm, we store the length of the LCS, in a matrix ℓ, where $\ell_{\mathrm{L}, \mathrm{j}}$ is the length of the $\operatorname{LCS}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{j}}\right)$
Once we fill in the matrix, the $\ell_{n, m}$ is the length of the LCS
We can trace back and recover the LCS using the dynamic programming matrix

LCS: divide-and-conquer

- Note the repeated computation

LCS with dynamic programming
demonstration

Recovering the LCS from the matrix

Two loops up to n and m , the time complexity is $\mathrm{O}(\mathrm{nm})$

- Similarly, the space complexity is also $\mathrm{O}(\mathrm{nm})$
$\mathrm{O}(\mathrm{nm})$
Similarly, the space complexity is also O(nm)

Complexity of filling the LCS matrix

```
1-np.zeros(shape-(n+1,n+1))
    for i in range(1, n):
    for f in rango(1, m)
    1[i,j] - 1[i-1,j j-1]+1
    else:, j] = 1[i,j] = max(1[i-1,j], 1[i,j-1])
```


Transforming one string to another

- The table (back arrows) also gives a set of edit operations to transform one string to another
For LCS, operations are
- copy (diagonal arrows in the demonstration)
- Insert (left arrows in the demo - assuming original string is the vertical one) - delete (up arrows in the demo)
- These also form an alignment between two strings
- Different set of edit operations recovered will yield the same LCS, but different alignments

LCS - some remarks

We formulated the algorithm as maximizing the LCS

- Alternatively, we can minimize the costs associated with each operation:
- copy $=0$
- delete $=1$
- delete $=1$
- insert $=1$
- The cost settings above are the typical, e.g., as in diff
- In some applications we may want to have different costs for delete and insert (e.g., mapping lemmas to inflected forms of words)

Similarly, we may want to assign different costs for different characters (e.g., higher cost to delete consonants in historical linguistics)

Levenshtein distance

demonstration

Edit distance: extensions and variations

Another possible operation we did not cover is swap (or transpose), which is useful for applications like spell checking
In some applications (e.g., machine translation, OCR correction) we may want to have one-to-many or many-to-one alignments

- Additional requirements often introduce additional complexity

It is sometimes useful to learn costs from data

LCS alignments

Levenshtein distance

definition

- Levenshtein difference between two strings is the total cost of insertions, deletions and substitutions
- With cost of 1 for all operations

$$
\operatorname{lev}(X x, Y y)= \begin{cases}\operatorname{len}(X) & \text { if } \operatorname{len}(Y y)=0 \\
\operatorname{len}(Y) \\
\operatorname{lev}(X, Y) & \text { if } \operatorname{len}(X x)=0 \\
1+\min \left\{\begin{array}{l}
\operatorname{lev}(X, Y y) \\
\operatorname{lev}(X x, Y) \\
\operatorname{lev}(X, Y)
\end{array}\right. & \end{cases}
$$

- Naive recursion (as defined above), again, is intractable
- But, the same dynamic programming method works

Levenshtein distance
edits and alignments

Summary

- Edit distance is an important problem in many fields including computational linguistics
- A number of related problems can be efficiently solved by dynamic programming
Edit distance is also important for approximate string matching and alignment - Reading suggestion: goodrich2013, jurafsky2009

Next:

- Algorithms on strings: tries
- Reading: goodrich2013,

Acknowledgments, credits, references
 Whensmumamea $10 / 1$

-	

