
Analysis of Algorithms
Data Structures and Algorithms for Computational Linguistics III

(ISCL-BA-07)

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2022/23

version: 76c3e10 @2022-10-31

What are we analyzing?

• So far, we frequently asked: ‘can we do better?’
• Now, we turn to the questions of

– what is better?
– how do we know an algorithm is better than the other?

• There are many properties that we may want to improve
– correctness
– robustness
– simplicity
– …
– In this lecture, efficiency will be our focus

• in particular time efficiency/complexity

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 1 / 1

How to determine running time of an algorithm?
write the code, experiment

• A possible approach:
– Implement the algorithm
– Test with varying input
– Analyze the results

• A few issues with this approach:
– Implementing something that does not

work is not productive (or fun)
– It is often not possible to cover all potential

inputs
– If your version takes 10 seconds less than a

version reported 10 years ago, do you really
have an improvement?

• A formal approach offers some help here

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 2 / 1

Some functions to know about

Family Definition
Constant f(n) = c

Logarithmic f(n) = logb n

Linear f(n) = n

N log N f(n) = n logn
Quadratic f(n) = n2

Cubic f(n) = n3

Other polynomials f(n) = nk, for k > 3

Exponential f(n) = bn, for b > 1

Factorial f(n) = n!

• We will use these functions to characterize running times of algorithms

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 3 / 1

Some functions to know about
the picture - why we care about their difference

10 20 30 40 50 60 70 80 90 100

0

500

1,000

1,500

2,000

n

f
(n

)

O(logn)

O(n)

O(n logn)

O(n2)

O(n3)

O(2n)

O(n!)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 4 / 1

Some functions to know about
the bigger picture

101 103 105 107 109 1011 1013 1015 1017 1019

100

105

1010

1015

1020

n

f(
n)

O(logn)

O(n)

O(n logn)

O(n2)

O(n3)

O(2n)

O(n!)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 5 / 1

A few facts about logarithms
• Logarithm is the inverse of exponentiation:

x = logb n ⇐⇒ bx = n

• We will mostly use base-2 logarithms. For us, no-base means base-2
• Additional properties:

log xy = log x+ log y

log
x

y
= log x− log y

log xa = a log x

logb x =
logk x

logk b

• Logarithmic functions grow (much) slower than linear functions
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 6 / 1

Polynomials

• A degree-0 polynomial is a constant function (f(n) = c)
• Degree-1 is linear (f(n) = n+ c)
• Degree-2 is quadratic (f(n) = n2 + n+ c)
• …
• We generally drop the lower order terms (soon we’ll explain why)
• Sometimes it will be useful to remember that

1+ 2+ 3+ . . .+ n =
n(n+ 1)

2

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 7 / 1

Combinations and permutations

• n! = n× (n− 1)× . . .× 2× 1

• Permutations:

P(n, k) = n× (n− 1)× . . .× (n− k− 1) =
n!

(n− k)!

• Combinations ‘n choose k’:

C(n, k) =

(
n

k

)
=

P(n, k)

P(k, k)
=

n!

(n− k)!× k!

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 8 / 1

Proof by induction

• Induction is an important proof technique
• It is often used for both proving the correctness and running times of

algorithms
• It works if we can enumerate the steps of an algorithm (loops, recursion)

– Show that base case holds
– Assume the result is correct for n, show that it also holds for n+ 1

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 9 / 1

Proof by induction
Example: show that 1+ 2+ 3+ . . .+ n = n(n+ 1)/2

• Base case, for n=1
(1× 2)/2 = 1

• Assuming
n∑

i=1

i =
n(n+ 1)

2

we need to show that
n+1∑
i=1

i =
(n+ 1)(n+ 2)

2

n(n+ 1)

2
+ (n+ 1) =

n(n+ 1) + 2(n+ 1)

2
=

(n+ 1)(n+ 2)

2

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 10 / 1

Formal analysis of running time of algorithms

• We are focusing on characterizing running time of algorithms
• The running time is characterized as a function of input size
• We are aiming for an analysis method

– independent of hardware / software environment
– does not require implementation before analysis
– considers all possible inputs

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 11 / 1



How much hardware independence?
quite, but not completely: we assume a RAM model of computing

• Characterized by random access memory (RAM) (e.g., in comparison to a
sequential memory, like a tape)

• We assume the system can perform some primitive operations (addition,
comparison) in constant time

• The data and the instructions are stored in the RAM
• The processor fetches them as needed, and executes following the instructions
• This is largely true for any computing system we use in practice

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 12 / 1

RAM model: an example

pr
oc

es
sin

g
un

it

R0

R1

R2

R3

…10
load R0,2011
add R0,112
compare R0,R113
jumpeq 1814
…15

16
17
18
19
20
21
22
23

• Processing unit performs basic
operations in constant time

• Any memory cell with an address
can be accessed in equal (constant)
time

• The instructions as well as the data
is kept in the memory

• There may be other, specialized
registers

• Modern processing units also
employ a ‘cache’

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 13 / 1

Formal analysis of running time

• Simply count the number of primitive operations
• Primitive operations include:

– Assignment
– Arithmetic operations
– Comparing primitive data types (e.g., numbers)
– Accessing a single memory location
– Function calls, return from functions

• Not primitive operations:
– loops, recursion
– comparing sequences

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 14 / 1

Focus on the worst case

• Algorithms are generally faster on certain input than others
• In most cases, we are interested in the worst case analysis

– Guaranteeing worst case is important
– It is also relatively easier: we need to identify the worst-case input

• Average case analysis is also useful, but
– requires defining a distribution over possible inputs
– often more challenging

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 15 / 1

Counting primitive operations
example: nearest points, the naive algorithm

def shortest_distance(points):
n = len(points) # 2 (constant?)
min = 0 # 1 (constant)
for i in range(n): # n times

for j in range(i): # i times
d = distance(points[i], points[j]) # 2? (constant)
if min > d: # 1 (constant)

min = d # 1 (constant)
return min # 1 (constant)

T(n) = 3+ (1+ 2+ 3+ . . .+ n− 1)× 4+ 1

= 4× (n− 1)(n− 2)

2
+ 4

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 16 / 1

Big-O notation

• Big-O notation is used for indicating an upper bound on running time of an
algorithm as a function of running time

• If running time of an algorithm is O(f(n)), its running time grows
proportional to f(n) as the input size n grows

• More formally, given functions f(n) and g(n), we say that f(n) is O(g(n)) if
there is a constant c > 0 and integer n0 ⩾ 1 such that

f(n) ⩽ c× g(n) for n ⩾ n0

• Sometimes the notation f(n) = O(g(n)) is also used, but beware: this equal
sign is not symmetric

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 17 / 1

Big-O example
T(n) = n2 − 2n+ 5 is O(n2)

0 20 40 60 80 100

0

2,000

4,000

6,000

8,000

10,000

n

T
(n

)

n2 − 2n+ 5

n2

0 1 2 3 4 5

0

10

20

n

T
(n

)

n2 − 2n+ 5

n2

Not surprising: T(n) < n2 for n ⩾ 3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 18 / 1

Big-O, another example
T(n) = n2 + 3n is O(n2)

0 1 2 3 4 5

0

10

20

30

40

n

T
(n

)

n2 + 3n

n2

0 1 2 3 4 5

0

10

20

30

40

50

n

T
(n

)

n2 + 3n

2×n2

T(n) < 2× n2 for n ⩾ 4

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 19 / 1

Big-O, yet another example
but n2 is not O(n) – proof by picture

100 101 102 103

100

101

102

103

104

105

106

n

T
(n

)

n2

n

10×n

100×n

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 20 / 1

Back to the function classes

Family Definition
Constant f(n) = c

Logarithmic f(n) = logb n

Linear f(n) = n

N log N f(n) = n logn
Quadratic f(n) = n2

Cubic f(n) = n3

Other polynomials f(n) = nk, for k > 3

Exponential f(n) = bn, for b > 1

Factorial f(n) = n!

• None of these functions can be expressed as a constant factor of another

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 21 / 1

Rules of thumb
Drop the lower order terms

• In the big-O notation, we drop the constants and lower order terms
– Any polynomial degree d is O(nd)

10n3 + 4n2 + n+ 100 is O(n3)
– Drop any lower order terms:

2n + 10n3 is O(2n)

• Use the simplest expression:
– 5n+ 100 is O(5n), but we prefer O(n)
– 4n2 + n+ 100 is O(n3),

• Transitivity: if f(n) = O(g(n)), and g(n) = O(h(n)), then f(n) = O(h(n))

• Additivity: if both f(n) and g(n) are O(h(n)) f(n) + g(n) is O(h(n))

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 22 / 1

Rules of thumb
examples

f(n) O(f(n))

7n− 2 n

3n3 − 2n2 + 5 n3

3 logn+ 5 logn
logn+ 2n 2n

10n5 + 2n 2n

log 2n n

2n + 4n 4n

100× 2n 2n

n2n n2n

logn! n logn

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 23 / 1



Big-O: back to nearest points
def shortest_distance(points):

n = len(points) # 2 (constant?)
min = 0 # 1 (constant)
for i in range(n): # n times

for j in range(i): # i times
d = distance(points[i], points[j]) # 2? (constant)
if min > d: # 1 (constant)

min = d # 1 (constant)
return min # 1 (constant)

T(n) = 3+ (1+ 2+ 3+ . . .+ n− 1)× 4+ 1

= 4× (n− 1)(n− 2)

2
+ 4 = 2(n2 − 3n+ 2) + 3

= O(n2)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 24 / 1

Big-O examples
linear search

1 def linear_search(seq, val):
2 i, n = 0, len(seq)
3 while i < n:
4 if seq[i] == val:
5 return i
6 i += 1
7 return None

• What is the worst-case running time?
2. 2 assignments
3. 2n comparisons, n increment
7. 1 return statemnt

T(n) = 3n+ 3 = O(n)

• What is the average-case running time?
2. 2 assignments
3. 2(n/2) comparisons, n/2 increment, 1

return
T(n) = 3/2n+ 3 = O(n)

• What about best case? O(1)

Note: do not confuse the big-O with the worst case analysis.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 25 / 1

Recursive example
Recursive binary search

1 def rbs(a, x, L=0, R=n):
2 if L >= R:
3 return None
4 M = (L + R) // 2
5 if a[M] == x:
6 return M
7 if a[M] > x:
8 return rbs(a, x, L,

M - 1)↪→
9 else:

10 return rbs(a, x, M +
1, R)↪→

• Counting is not easy, but realize that
T(n) = c+ T(n/2)

• This is a recursive formula, it means
T(n/2) = c+ T(n/4),
T(n/4) = c+ T(n/8), . . .

• So, T(n) = 2c+ T(n/4) = 3c+ T(n/8)

• More generally, T(n) = ic+ T(n/2i)

• Recursion terminates when n/2i = 1, or n = 2i,
the good news: i = logn

• T(n) = c logn+ T(1) = O(logn)

You do not always need to prove: for most recurrence relations, there is a way to
obtain quick solutions (we are not going to cover it further, see Appendix)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 26 / 1

Why asymptotic analysis is important?
‘maximum problem size’

• Assume we can solve a problem of size m in a given time on current hardware
• We get a better computer, which runs 1024 times faster
• New problem size we can solve in the same time

Complexity new problem size
Linear (n) 1024m

Quadratic (n2) 32m

Exponential (2n) m+ 10

• This also demonstrates the gap between polynomial and exponential
algorithms:

– with a exponential algorithm fast hardware does not help
– problem size for exponential algorithms does not scale with faster computers

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 27 / 1

Worst case and asymptotic analysis
pros and cons

• We typically compare algorithms based on their worst-case performance
pro it is easier, and we get a (very) strong guarantee: we know that the algorithm

won’t perform worse than the bound
con a (very) strong guarantee: in some (many?) problems, worst case examples are

rare
– In practice you may prefer an algorithm that does better on average (we’ll see

examples from sorting)
• Our analyses are based on asymptotic behavior

pro for a ‘large enough’ input asymptotic analysis is correct
con constant or lower order factors are not always unimportant

– A constant factor of 100100 should probably not be ignored

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 28 / 1

Big-O relatives

• Big-O (upper bound): f(n) is O(g(n))
if f(n) is asymptotically less than or equal to g(n)

f(n) ⩽ cg(n) for n > n0

• Big-Omega (lower bound): f(n) is Ω(g(n))
if f(n) is asymptotically greater than or equal to g(n)

f(n) ⩾ cg(n) for n > n0

• Big-Theta (upper/lower bound): f(n) is Θ(g(n))
if f(n) is asymptotically equal to g(n)

f(n) is O(g(n)) and f(n) is Ω(g(n))

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 29 / 1

Big-O, Big-Ω, Big-Θ: an example
T(n) = n2 + 3n is Θ(n2)

0 1 2 3 4 5

0

20

40

n

T
(n

)

2×n2

n2 + 3n

1×n2

O for c = 2 and n0 = 3

T(n) ⩽ cg(n) for n > n0

Ω for c = 1 and n0 = 0

T(n) ⩾ cg(n) for n > n0

Θ for c = 2, n0 = 3, c ′ = 1 and n ′
1 = 0

T(n) ⩽ cg(n) for n > n0 and
T(n) ⩾ c ′g(n) for n > n ′

0

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 30 / 1

Summary

• Algorithmic analysis mainly focuses on worst-case asymptotic running times
• Sublinear (e.g., logarithmic), Linear and n log n algorithms are good
• Polynomial algorithms may be acceptable in many cases
• Exponential algorithms are bad
• We will return to concepts from this lecture while studying various algorithms
• Reading for this lectures: goodrich2013

Next:
• Common patterns in algorightms
• Sorting algorithms
• Reading: goodrich2013 – up to 12.7

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 31 / 1

Acknowledgments, credits, references

• Some of the slides are based on the previous year’s course by Corina Dima.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.1

A(nother) view of computational complexity
P, NP, NP-complete and all that

• A major division of complexity classes according to Big-O notation is between
P polynomial time algorithms

NP non-deterministic polynomial time algorithms
• A big question in computing is whether P = NP
• All problems in NP can be reduced in polynomial time to a problem in a

subclass of NP (NP-complete)
– Solving an NP complete problem in P would mean proving

P = NP

Video from https://www.youtube.com/watch?v=YX40hbAHx3s

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.2

Exercise
Sort the functions based on asymptotic order of growth

logn1000

n log(n)

5n

logn

logn1/ logn

logn

log 2n/n

logn!

log 2n

log 5n(
n

n/2

)
log logn!

√
n

n2

2n(
n

2

)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.3

Recurrence relations
the master theorem

• Given a recurrence relation:

T(n) = aT
(n
b

)
+ f(n)

a number of sub-problems
b reduction factor or the input

f(n) amount of work for creating and combining sub-problems

T(n) =


Θ(nlogb a) if f(n) is O(nlogb a−ϵ)

Θ(nlogb a logn) if f(n) is Θ(nlogb a)

Θ(f(n)) if f(n) is Ω(nlogb a+ϵ) and af(n/b) ⩽ cf(n) for some c < 1

• In many practical cases a = b (simplifies the expressions above)
• But the theorem is not general for all recurrences: it requires equal splits

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.4

https://www.youtube.com/watch?v=YX40hbAHx3s


blank

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.5

blank

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.6

blank

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2022/23 A.7


