Analysis of Algorithms

Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-17)

Çağrı Çoltekin

ccoltekinasfa.uni-tuebingen.de
University of Tubingon
Seminar fur Sprachwissenschaft
Winter Semester 2022/23

What are we analyzing?
-So far, we frequently asked: 'can we do better?'

- Now, we turn to the questions of
- what is better?
- how do we know an algorithm is better than the other?
- There are many properties that we may want to improve
- correctness
- robustress
- robustress
- In this lecture, efficiency will be our focus
- in particular time efficiency/complexity

Some functions to know about

Family	Definition
Constant	$f(n)=c$
Logarithmic	$f(n)=\log _{b} n$
Linear	$f(n)=n$
N log N	$f(n)=n \log n$
Quadratic	$f(n)=n^{2}$
Cubic	$f(n)=n^{3}$
Other polynomials	$f(n)=n^{k}$, for $k>3$
Exponential	$f(n)=b^{n}$, for $b>1$
Factorial	$f(n)=n!$

- We will use these functions to characterize running times of algorithms
\qquad

Some functions to know about
the picture - why we care about their difference

A few facts about logarithms

- Logarithm is the inverse of exponentiation:

$$
x=\log _{\mathrm{b}} \mathrm{n} \Leftrightarrow \mathrm{~b}^{\mathrm{x}}=\mathrm{n}
$$

- We will mostly use base-2 logarithms. For us, no-base means base-2
- Additional properties:

$$
\begin{aligned}
\log x y & =\log x+\log y \\
\log \frac{x}{y} & =\log x-\log y \\
\log x^{a} & =a \log x \\
\log _{b} x & =\frac{\log _{k} x}{\log _{k} b}
\end{aligned}
$$

- Logarithmic functions grow (much) slower than linear functions

> ss/themery a turam
ns

- Implementing something that does not
work is not productive (or fun)
- It is often not possible to cover all potential
- It is often not possible to cover all potentia
inputs
- If your version takes 10 seconds less than a
version reported 10 years ago, do vou really have an improvement?
- A formal approach offers some help here

How much hardware independence?
quite, but not completedy: we assume a RAM model of computing

- Characterized by random access memory (RAM) (e.g., in comparison to a sequential memory, like a tape)
We assume the system can perform some primitive operations (addition, comparison) in constant time
The data and the instructions are stored in the RAM
- The processor fetches them as needed, and executes following the instructions
- This is largely true for any computing system we use in practice

RAM model: an example

- Processing unit performs basic operations in constant time
- Any memory cell with an address can be accessed in equal (constant) time
- The instructions as well as the data is kept in the memory
- There may be other, specialized registers
- Modern processing units also employ a 'cache'

Formal analysis of running time

- Simply count the number of primitive operations
- Primitive operations include:
- Assignment
- Arithmetic operations
- Comparing primitive data types (e.g., numbers)
- Accessing a single memory location

Not primitive operations:

- loops, recursion
- comparing sequences

Counting primitive operations

example nearest points, the naive algorithm

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =3+(1+2+3+\ldots+n-1) \times 4+1 \\
& =4 \times \frac{(n-1)(n-2)}{2}+4
\end{aligned}
$$

Big-O example

$T(n)-n^{2}-2 n+515 O\left(n^{2}\right.$

n				
Ccaman ss/athemara atmanem	$\overline{-n}^{n^{2}-\frac{1}{2 n+5}}$			

Big-O, yet another example
but $\mathrm{n}^{2} \approx$ not $\mathrm{O}(\mathrm{n})$ - proof by plicture

Rules of thumb

Drop the lower order terms

- In the big-O notation, we drop the constants and lower order terms
- Any polynomial degree d is $\mathrm{O} \mid \mathrm{n}^{d}$
$10 n^{3}+4 n^{2}+n+100$ is $\mathrm{O}\left(\mathrm{n}^{3}\right)$
Drop any lower order terms:
$2^{n}+10 \mathrm{n}^{3}$ is $\mathrm{O}\left(2^{n}\right)$
- Use the simplest expression
$-5 n+100$ is $\mathrm{O}(5 \mathrm{n})$, but we prefer $\mathrm{O}(\mathrm{n})$
$-4 n^{2}+n+100$ is $O\left(n^{3}\right)$,
- Transitivity: if $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$, and $\mathrm{g}(\mathrm{n})=\mathrm{O}(\mathrm{h}(\mathrm{n}))$, then $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{h}(\mathrm{n}))$
- Additivity: if both $f(n)$ and $g(n)$ are $O(h(n)) f(n)+g(n)$ is $O(h(n))$
- Algorithms are generally faster on certain input than others
- In most cases, we are interested in the worst case analysis
- Guaranteeing worst case is important
- It is also relatively easier: we need to identify the worst-case input
- Average case analysis is also useful, but
- requires defining a distribution over possible inputs
- often more challenging

Big-O notation

- Big-O notation is used for indicating an upper bound on running time of an algorithm as a function of running time
- If running time of an algorithm is $\mathrm{O}(\mathrm{f}(\mathrm{n}))$, its running time grows proportional to $f(n)$ as the input size n grows
- More formally, given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there is a constant $\mathrm{c}>0$ and integer $\mathrm{n}_{0} \geqslant 1$ such that

$$
f(n) \leqslant c \times g(n) \text { for } n \geqslant n_{0}
$$

- Sometimes the notation $f(n)=O(g(n))$ is also used, but beware: this equal sign is not symmetric

Big-O, another example
$\mathrm{T}(\mathrm{n})=\mathrm{n}^{2}+3 \mathrm{n} i \mathrm{~s} \mathrm{O}\left(\mathrm{n}^{2}\right)$

Back to the function classes

Family	Definition
Constant	$f(n)=c$
Logarithmic	$f(n)=\log _{b} n$
Linear	$f(n)=n$
N log N	$f(n)=n \log n$
Quadratic	$f(n)=n^{2}$
Cubic	$f(n)=n^{3}$
Other polynomials	$f(n)=n^{k}$, for $k>3$
Exponential	$f(n)=b^{n}$, for $b>1$
Factorial	$f(n)=n!$

None of these functions can be expressed as a constant factor of another

$f(n)$	$O(f(n)]$
$7 n-2$	n
$3 n^{3}-2 n^{2}+5$	n^{3}
$3 \log n+5$	$\log n$
$\log n+2^{n}$	2^{n}
$10 n^{5}+2^{n}$	2^{n}
$\log 2^{n}$	n
$2^{n}+4^{n}$	4^{n}
100×2^{n}	2^{n}
$n 2^{n}$	$n 2^{n}$
$\log n!$	$n \log n$

Big-O: back to nearest points

def shortest_distance(points):

```
        n-len(points)
    min =0 ( for i in range(n):
```



```
        for j in range(i):
        d distance(po
    return nin
```

2. 2 (constant?)

1 (constant)
\# in times
on
i times
2 trmes
$2 ?$
(constant)
*i (constant)
$\begin{array}{ll}\text { A } & 1 \text { (constant) } \\ \text { a } & 1 \text { (constant) }\end{array}$

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =3+(1+2+3+\ldots+n-1) \times 4+1 \\
& =4 \times \frac{(\mathrm{n}-1)(\mathrm{n}-2)}{2}+4=2\left(\mathrm{n}^{2}-3 n+2\right)+3 \\
& =0\left(n^{2}\right)
\end{aligned}
$$

Big-O examples

linear search

- What is the worst-case running time? 2. 2 assignments

3. $2 n$ comparisons, n increment

1 return statemnt
$\mathrm{T}(\mathrm{n})=3 \mathrm{n}+3=\mathrm{O}(\mathrm{n})$
-What is the average-case running time?
2. 2 assignments
$2(\mathrm{n} / 2)$ comparisons, $\mathrm{n} / 2$ increment, 1 return
$\mathrm{T}(\mathrm{n})=3 / 2 \mathrm{n}+3=\mathrm{O}(\mathrm{n})$

- What about best case? $\mathrm{O}(1$

Note: do not confuse the big-O with the worst case analysis.

Recursive example

Recursive binary search

```def \(\mathrm{rbs}(\mathrm{a}, \mathrm{x}, \mathrm{L}=0, \mathrm{R}-\mathrm{n})=\) if \(L>-R\) : return Mone \(M=(\mathrm{L}+\mathrm{R}) / / 2\) if \(a[M]-x\) : return M if \(a[M]>x\) : return \(\mathrm{rbs}(\mathrm{a}, \mathrm{x}, \mathrm{L}\), \(\rightarrow \mathrm{M}-1\) ) alse: return rbs(a, x, M+ -1, R)```

Counting is not easy, but realize that $T(n)=c+T(n / 2)$

- This is a recursive formula, it means
$T(n / 2)=c+T(n / 4)$,
$\mathrm{T}(\mathrm{n} / 4)=\mathrm{c}+\mathrm{T}(\mathrm{n} / \mathrm{B})$,
- $\mathrm{So}, \mathrm{T}(\mathrm{n})=2 \mathrm{c}+\mathrm{T}(\mathrm{n} / 4)=3 \mathrm{c}+\mathrm{T}(\mathrm{n} / \mathrm{s})$
- More generally, $T(n)=i c+T\left(n / 2^{6}\right)$
- Recursion terminates when $n / 2^{i}=1$, or $n=2^{\text {b }}$,
the good news: $i=\log n$
- $T(n)=c \log n+T(1)=O(\log n)$

You do not always need to prove: for most recurrence relations, there is a way to obtain quick solutions (we are not going to cover it further, see Appendix)

Worst case and asymptotic analysis
pros and cons

We typically compare algorithms based on their worst-case performance
pro it is easser, and we get a (very) strong guarantee: we know that the algorithm won't perform worse than the bound
con a (very) strong guarantee: in some (many?) problems, worst case examples are rare
In practice you may prefer an algorithm that does better on average (we'll see examples from sorting)
Our analyses are based on asymptotic behavior
pro for a 'large enough' input asymptotic analysis is correct
con constant or lower order factors are not always unimportan

- A constant factor of $100^{100}$ should probably not be ignored

Why asymptotic analysis is important?
'maximum problem size'

- Assume we can solve a problem of size $m$ in a given time on current hardware

We get a better computer, which runs 1024 times faster
New problem size we can solve in the same time

Complexity	new problem size
Linear $(n)$	1024 m
Quadratic $\left(n^{2}\right)$	32 m
Exponential $\left(2^{n}\right)$	$m+10$

This also demonstrates the gap between polynomial and exponential algonthms:
with a exponential algorithm fast hardware does not help

- problem size for exponential algorithms does not scale with faster computers




## Big-O relatives

- Big-O (upper bound): $f(n)$ is $\mathrm{O}(\mathrm{g}(\mathrm{n})$ )

If $f(n)$ is asymptotically less than or equal to $g(n)$

$$
f(n) \leqslant c g(n) \text { for } n>n_{0}
$$

- Big-Omega (lower bound): $f(n)$ is $\Omega(g(n))$

If $f(n)$ is asymptotically greater than or equal to $g(n)$
$\mathrm{f}(\mathrm{n}) \geqslant \mathrm{cg}(\mathrm{n})$ for $\mathrm{n}>\mathrm{n}_{0}$
Big-Theta (upper/lower bound): $f(n)$ is $\Theta(g(n)$
if $f(n)$ is asymptotically equal to $g(n)$
$\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ and $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$

## Big-O, Big- $\Omega$, Big- - : an example

$T(n)-n^{2}+3 n$ is $\theta\left(n^{2}\right)$


O for $\mathrm{c}=2$ and $\mathrm{n}_{0}=3$
$T(n) \leqslant c g(n)$ for $n>n_{0}$
$\Omega$ for $c=1$ and $n_{0}=0$
$T(n) \geqslant c g(n)$ for $n>n_{0}$
$\Theta$ for $c=2, n_{0}=3, c^{\prime}=1$ and $n_{1}^{\prime}=0$
$T(n) \leqslant \operatorname{cg}(n)$ for $n>n_{0}$ and
$T(n) \geqslant c^{\prime} g(n)$ for $n>n_{0}^{\prime}$

## Summary

- Algorithmic analysis mainly focuses on worst-case asymptotic running times
- Sublinear (e.g., Logarithmic), Linexr and $n \log n$ algorithms are good

Polynomial algorithms may be acceptable in many cases
Exponential algorithms are bad

- We will return to concepts from this lecture while studying various algorithms
- Reading for this lectures: goodrich2013

Next:

- Common patterns in algorightms

Sorting algorithms

- Reading: goodrich2013 - up to 12.7

Acknowledgments, credits, references

- Some of the slides are based on the previous year's course by Corina Dima.

A(nother) view of computational complexity
P. NP, NP-complete and all that

- A major division of complexity classes according to Big-O notation is between P polynomial time algorithms
NP non-deterministic polynomial time algorithms
- A big question in computing is whether $\mathrm{P}=\mathrm{NP}$

All problems in NP can be reduced in polynomial time to a problem in a
subclass of NP (NP-complete)

- Solving an NP complete problem in P would mean proving

$$
\mathrm{P}=\mathrm{NP}
$$

Video from https: //uwu youtube con/watch?v=YX40hbaHx 38

## Exercise

Sort the functions based on asymptostic order of growth

$\log n^{1000}$	$\log 5^{n}$
$n \log (n)$	$\binom{n}{n / 2}$
$5^{n}$	$\log \log n!$
$\log n$	$\sqrt{n}$
$\log n^{1 / \log n}$	$n^{2}$
$\log n$	$2^{n}$
$\log 2^{n} / n$	$\binom{n}{2}$

## $\log n$ !

$\sqrt{n}$
$n^{2}$
(n)

## Recurrence relations

the master theorem
-Given a recurrence relation:

$$
\begin{equation*}
T(n)=a T\left(\frac{n}{b}\right)+f(n) \tag{array}
\end{equation*}
$$

a number of sub-problems
b reduction factor or the input
$f(n)$ amount of work for creating and combining sub-problems


- In many practical cases $\mathrm{a}=\mathrm{b}$ (simplifies the expressions above)

But the theorem is not general for all recurrences: it requires equal split.


$\square$


